Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields.

نویسندگان

  • Nils Elsner
  • C Patrick Royall
  • Brian Vincent
  • David R E Snoswell
چکیده

We compare the behavior of a new two-dimensional aqueous colloidal model system with a simple numerical treatment. To the first order the attractive interaction between the colloids induced by an in-plane rotating ac electric field is dipolar, while the charge stabilization leads to a shorter ranged, Yukawa-like repulsion. In the crystal-like "rafts" formed at sufficient field strengths, we find quantitative agreement between experiment and Monte Carlo simulation, except in the case of strongly interacting systems, where the well depth of the effective potential exceeds 250 times the thermal energy. The "lattice constant" of the crystal-like raft is located approximately at the minimum of the effective potential, resulting from the sum of the Yukawa and dipolar interactions. The experimental system has display applications, owing to the possibility of tuning the lattice spacing with the external electric field. Limitations in the applied field strength and relative range of the electrostatic interactions of the particles result in a reduction in tunable lattice spacing for small and large particles, respectively. The optimal particle size for maximizing the lattice spacing tunability was found to be around 1000 nm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-chip micromanipulation and assembly of colloidal particles by electric fields

We overview the ways in which electric fields can be used for on-chip manipulation and assembly of colloidal particles. Particles suspended in water readily respond to alternating (AC) or direct current (DC) electric fields. Charged particles in DC fields are moved towards oppositely charged electrodes by electrophoresis. Dielectrophoresis, particle mobility in AC fields, allows precise manipul...

متن کامل

Two-dimensional crystallization of microspheres by a coplanar AC electric field.

The particle-field and particle-particle interactions induced by alternating electric fields can be conveniently used for on-chip assembly of colloidal crystals. Two coplanar electrodes with a millimeter-sized gap between them are used here to assemble two-dimensional crystals from suspensions of either latex or silica microspheres. When an AC voltage is applied, the particles accumulate and cr...

متن کامل

Multidirectional colloidal assembly in concurrent electric and magnetic fields.

Dipolar interactions between nano- and micron sized colloids lead to their assembly into domains with well-defined local order. The particles with a single dipole induced by an external field assemble into linear chains and clusters. However, to achieve the formation of multidirectionally organized nano- or microassemblies with tunable physical characteristics, more sophisticated interaction to...

متن کامل

Colloidal crystal grain boundary formation and motion

The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Browni...

متن کامل

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 15  شماره 

صفحات  -

تاریخ انتشار 2009